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Abstract — In order to compute eddy currents in thin
conductive non-magnetic shells, an integral formulgon is
proposed. Based on a shell element formulation, it general
and enables to the modeling of various problems whever
their skin-depth.

I. INTRODUCTION

The problem of eddy currents computation in thiellsh
for the case of a skin depth much greater than the
thicknesse (8 >>e) has been treated by many authors [1]-
[4]. In this case, the eddy currents distributisrsupposed
to be uniform across the thickness and surfacesesits are
used. Such formulations are currently well-knowd aave
shown good accuracies with a few numbers of elesnient
comparison with finite element methods where the ai
region needs to be meshed.

However, the computation of eddy currents in tiiells
in the general cased(<eord=e for instance) is still a
difficulty and has only been studied by few authdmg5], a
shell element formulation has been proposed. Based
pseudo-analytical solution (solution of the 1D peoh) and
a nodal approximation of the scalar magnetic pa@knit
enables to take into account the field variatioross the
thickness of the shell (i.e. the skin depth) for @&bmetry
with a quite good accuracyln [6], shell element
formulation has been introduced in finite elemenéthod.

This paper presents an integral formulation whidhpds
to modeling the thin shell conductive non-magndatic¢he
case general {>>e or d=e ord<<e). By using the
simple surface meshing of the shell, the numbem&hown
is thus reduced considerably.

Il. FORMULATION

A. Equations for the shell
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Fig.1 Thin conductive region

We consider that a small skin depbhis associated to
the non-magnetic shell with a thickness e (FigThe field
variation of the tangential component across thesknof
shell is given by the analytical solution of thelplem for
an infinite plane [5], [6]:

Hs(2) = (1/sh(ae)[H wSh(ae/2+az)+H 4 sh(ae/2 —az)] 1)
wherea= (1+j)/d, His and Hys are the field tangential
values on both sides of the shell. Applying Galerkiethod

on the Maxell-Faraday equations for side “1” of ghell on
areal 3D surfacg, we get:

jgradsw(cxHJS —BH 5 )dr +jwpoijlnldr =0(2)
r r

wherea =a/(oth @) p=al/(csh@g); w is a set of

nodal surface weighting functions; is the normal vector
corresponding the side “1” of the shell.

The other equation corresponding to the other sidbe
shell is obtained when indices “1” and “2” are exbed:

Igradsw(aH o —BH . )dr +jwpoij2n2dr =0 (3)
r r

wheren, is the normal vector corresponding the side “2” of
the shell.

B. Integral formulation:

In this part, we consider the side “1” of the shd@lhe
volume courant density being tangential, it carekgressed
by:

J=curH =-n;xdH(z)/0z. (4)
Thus, by deriving (1), we get:
J(2) =(-al/sh@g)n, x [H JSCh(ae/ 2+ az)— H ,C h(ae/2— az)]
. (5)
Let us now consider that the shell is placed in an
inductor fieldH,. The total magnetic field Hs the sum of

Ho; and H,, the reaction of the eddy current in thin shell:
el2

H1:H01+(1/4T[)J. jJ(z)x(r/r3)dzdr (6)
r-el/2
wherer is the vector linking the integration point to the
point where the field is expressed (Fig.2). Additib
expressions can be given:

r=ry—(/2-2)n, andr? :(rs2 + (e/2—z)2)
Hl
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Fig.2 Field magnetic on the side “1"created by eddsrent

Using (5), (6) and (7), we obtain:
Hy=Ho+ WAD[(RyHg-RoH z)dm (8
r



1. STATIC AND QUASI-STATIC FIELDS

with:
a ch(ae/2+az)n x(rs— (€/2-2)n,)
Ry=- L ———dz (9)
shes ., (2+ €12-2)?)
e/2
L= a ch(ae/2 az).nlx(rS (2122 7)n,) dz.(10)
shes (2 + €12-2)?)
Using (8), equation (2) becomes:
Igradsw(aHJS—BH %)l
' (1)

+jw0IW{H01+4iI(R1HJS—R2H »)dr [n,dr =0
r T[r

Let us now introduce the reduced magnetic scalar
potential. Tangential magnetic fields on both sidéshell
are written:

Hy =Hg—grad ¢ (12)
Hx=Hq—grad ¢, (13)
whereH is the tangential inductor fieldp, and ¢, stand

for magnetic scalar potentials on both sides.
Using (11), (12) and (13), we obtain the final
formulation corresponding to side “1” of the shell:

- or.[gradS w.grads@,drr + B.[gradS w.grad,@,drr
r r
+(jopg /4n)jw.[j— R, grad, @,dr + I R, grad, cpzdr}dr (14)
r r r

= —(joap, /4n).[w{.[(Rl ~R,)H g dr}dr
r r

+(-a+ [5)jgradS W.H dl = jwojWH onydr
r r

The equation on side “2" of shell is obtained by
permuting subscripts “1” and “2”. These equatioasehto
be discretized. The easiest way is to mesh theacif
into n triangular elements associated with a constant
tangential component of eddy current (1-order shape
functions for the potential). The global squarenratystem
obtained has [2 equations (two complex magnetic scalar
potentials per node; the mesh is being composeg of
nodes).

l. NUMERICAL EXAMPLE

In this part, we consider two numerical examples. F
both, our formulation is compared with results giv®y 2D
FEM provided in Flux software [7]. In order to tekem,
we focus on the computed Joule losses at different
frequencies.

Fig.3 Hollow sphere

Fig.4 Thin conductive disk

In the first example, a conductive hollow sphere
(R=0.1m, e=2E-3m,c =6E7 S/m) is placed in a uniform

axial magnetic field = [0 0 1] (A/m) (Fig.3). The second
test case is a thin conductive disk (R=1m, e=50E-3m
0=6E7 S/m). This disk is placed in a uniform magneti
field Ho= [0 0 1] (A/m) (Fig.4).

Table | and Table Il show the Joule losses values
computed by our method and 2D FEM method in thesph
and the disk, respectively. We can see a smakrdiffces
between both computed values. Of course, the diffars
are larger with small values o compared to e. So the
surface mesh has to be refined in order to talkeantount
the rapid changing of current densities.

TABLE |
JOULE LOSSES OF THE HOLLOW SPHERE

Loss Joule (W) Loss Joule (W, .
e/d | computed by our compuited b(y LEM 2D Diff.
method
0.22 1.16E-6 1.14E-6 1.749
0.90 1.75E-6 1.71E-6 2.349
2.00 2.79E-6 2.90E-6 3.719
TABLE |l
JOULE LOSSES OF THE DISK
Loss Joule (W)
e/d | computed by our Iggrsnspﬂ?gcljeb(;,vz:w 2D Diff.
method
0.08 7.31E-9 7.33E-9 0.029
0.77 6.38E-6 6.32E-6 1.009
1.33 9.22E-6 9.54E-6 3.309

IV. CONCLUSION

In this paper, we have presented an integral faation
using shell elements in order to model thin conideaton —
magnetic regions. The formulation is general andoua
skin effect across thicknes® $>e or d=e ord<<e) are
taken into account. Moreover, a combination with N\io
and PEEC method [8] are being investigated in otder
model industrial device. In further word, formutats
enabling thin conductive magnetic shell will beeashed.
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